metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Wang-Xi Luo, Ming-Ming Yu, Lei Zheng, Ai-Li Cui* and Hui-Zhong Kou

Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China

Correspondence e-mail: cuial@mail.tsinghua.edu.cn

Key indicators

Single-crystal X-ray study T = 292 KMean $\sigma(\text{C}-\text{C}) = 0.005 \text{ Å}$ Disorder in main residue R factor = 0.046 wR factor = 0.108 Data-to-parameter ratio = 12.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Poly[µ-4,4'-bipyridine-di-µ-isothiocyanato-copper(II)]

In the title compound, $[Cu(NCS)_2(C_{10}H_8N_2)]_n$, the Cu^{II} ion (site symmetry 2) has an elongated octahedral coordination. Four N atoms of two thiocyanate anions and two 4,4'bipyridine (4,4'-bipy) ligands are sited at the equatorial positions, while two S atoms of two coordinating thiocyanate anions occupy the axial positions. The complete 4,4'-bipy molecule is generated by the twofold axis and one of its pyridine rings is disordered over two sets of positions. The copper ions are bridged by the 4,4'-bipy ligands, giving rise to a one-dimensional chain. The chains are further linked by the NCS⁻ anions, through the long axial Cu-S contacts, yielding a two-dimensional network.

Comment

Within the context of crystal engineering (Batten & Robson, 1998), 4,4'-bipyridine (4,4'-bipy) is an excellent bridging ligand, which can link two metal atoms *via* the N atoms of its two pyridine rings, and a variety of networks have been reported (Blake *et al.*, 1998; Carlucci *et al.*, 1999; Dong *et al.*, 2005; Maji *et al.*, 2004; Xu *et al.*, 2006). The thiocyanate anion (NCS⁻) can serve as a terminal ligand or a bridging ligand since both the N atom and the S atom can coordinate with metal centers (Bose *et al.*, 2006; Jiang *et al.*, 2004; Zhang *et al.*, 2005). As part of our ongoing investigations of networks containing the NCS⁻ anion, we report here the crystal structure of the title compound, (I) (Fig. 1).

The coordination geometry of the copper(II) ion (site symmetry 2) is distorted octahedral. Two N-bonded NCS⁻ anions and two 4,4'-bipy ligands establish the equatorial plane with normal Cu–N distances (Table 1). The elongated octahedral geometry is completed by two S atoms in the axial positions with a Cu–S bond distance of 3.047 (3) Å. One pyridine ring of the 4,4'-bipyridine unit is disordered over two sets of positions. The 4,4'-bipy ligands bridge Cu^{II} ions,

© 2006 International Union of Crystallography All rights reserved Received 2 September 2006 Accepted 6 September 2006

Figure 1

A segment of the polymeric structure of (I), showing 50% probability displacement ellipsoids and arbitrary spheres for the H atoms. Only one orientation of the disordered C1-pyridine ring is shown. [Symmetry codes: (i) $\frac{1}{2} - x$, 1 - y, z (also for unlabelled atoms), (ii) x, 1 - y, $\frac{1}{2} + z$; (iii) x, 1 + y, z; (iv) $\frac{1}{2} - x$, -y, z.]

Figure 2

The two-dimensional network of (I) formed by the Cu $\cdot\cdot$ S contacts. Only one disorder component of each 4,4'-bipy ligand is shown. H atoms have been omitted.

forming polymeric chains along the *c* axis. Adjacent chains are connected by the axial Cu-S contacts, forming a two-dimensional network extending parallel to (100) (Fig. 2).

Experimental

 $Cu(CH_3COO)_2 \cdot 2H_2O$ (0.1 mmol) and 4,4'-bipyridine (0.1 mmol) were dissolved in 15 ml of water and ethanol (2:1 ν/ν), resulting in a blue solution which was transfered to the left-hand side of an H-tube. An aqueous solution (15 ml) of KSCN (0.2 mmol) was placed in the right-hand side of the H-tube and ethanol served as the diffusion solvent. The reaction container was kept at room temperature and

Crystal data

 $\begin{bmatrix} Cu(NCS)_2(C_{10}H_8N_2) \end{bmatrix} & Z = 4 \\ M_r = 335.88 & D_x = 1.609 \text{ Mg m}^{-3} \\ \text{Orthorhombic, } Pcca & Mo \ K\alpha \ \text{radiation} \\ a = 10.879 \ (2) \text{ \AA} & \mu = 1.87 \ \text{mm}^{-1} \\ b = 5.7070 \ (11) \text{ \AA} & T = 292 \ (3) \text{ K} \\ c = 22.336 \ (5) \text{ \AA} & \text{Needle, green} \\ V = 1386.8 \ (5) \text{ \AA}^3 & 0.2 \times 0.05 \times 0.05 \ \text{mm} \\ \end{bmatrix}$

Data collection

Bruker SMART APEX CCD diffractometer ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2000) $T_{\min} = 0.898, T_{\max} = 0.917$

Refinement

Refinement on F^2 W $R[F^2 > 2\sigma(F^2)] = 0.046$ W $wR(F^2) = 0.109$ SS = 1.06(1323 reflections2107 parameters2H-atom parameters constrained

7574 measured reflections 1323 independent reflections 1036 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.046$

 $\theta_{\rm max} = 26.0^{\circ}$

 $w = 1/[\sigma^2(F_o^2) + (0.052P)^2 + 1.1086P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.53 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.32 \text{ e} \text{ Å}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Cu1-N3 Cu1-N2 ⁱ	1.937 (3) 2.040 (4)	Cu1-N1 $Cu1-S1^{ii}$	2.071 (5) 3.0471 (12)
C7–N3–Cu1 C7–S1–Cu1 ⁱⁱⁱ	172.4 (3) 94.8 (2)	N3-C7-S1	179.2 (3)

Symmetry codes: (i) $x, -y + 1, z + \frac{1}{2}$; (ii) x, y + 1, z; (iii) x, y - 1, z.

Atoms C1 and C2 and their attached H atoms are disordered over two positions with equal site occupancies. The H atoms were placed in calculated positions and treated using a riding-model approximation [C-H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$].

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 1998); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Ministry of Science Technology of China through the 973 Project (No. 2002CB613301), and the Natural Science Foundation of China (No. 20201008).

References

Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1494.

- Blake, A. J., Hill, S. J., Hubberstey, P. & Li, W.-S. (1998). J. Chem. Soc. Dalton Trans. pp. 909–916.
- Bose, D., Mostafa, G., Walsh, R. D. B., Zaworotko, M. J. & Ghosh, B. K. (2006). *Polyhedron*, **25**, 1477–1482.
- Bruker (2000). SMART, SAINT, SHELXTL and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Carlucci, L., Ciani, G. & Proserpio, D. M. (1999). J. Chem. Soc. Dalton Trans. pp. 1799–1804.

- Dong, H.-L., Xu, L., Liu, Q.-Y. & Sang, R.-L. (2005). Acta Cryst. E61, m2340– m2342.
- Jiang, Y.-B., Kou, H.-Z., Gao, F. & Wang, R.-J. (2004). Acta Cryst. C60, m261– m262.
- Maji, T. K., Uemura, K., Chang, H.-C., Matsuda, R. & Kitagawa, S. (2004). Angew. Chem. Int. Ed. 43, 3269–3272.
- Sheldrick, G. M. (1997). SHELXL97 and SHEXS97. University of Göttingen, Germany.
- Sheldrick, G. M. (1998). *SHELXTL*. Version 5.10. Bruker AXS Inc., Madison, Wisconsin. USA.
- Xu, H., Sun, R., Li, Y.-Z. & Bai, J.-F. (2006). Acta Cryst. E62, m1156–m1158. Zhang, X. M., Hao, Z. M. & Wu, H. S. (2005). Inorg. Chem. 44, 7301–7303.