Structure Reports

Online

Poly[μ-4,4'-bipyridine-di- μ-isothiocyanatocopper(II)]

ISSN 1600-5368

Wang-Xi Luo, Ming-Ming Yu, Lei Zheng, Ai-Li Cui* and Hui-Zhong Kou

Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China

Correspondence e-mail:
cuial@mail.tsinghua.edu.cn

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
Disorder in main residue
R factor $=0.046$
$w R$ factor $=0.108$
Data-to-parameter ratio $=12.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]In the title compound, $\left[\mathrm{Cu}(\mathrm{NCS})_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]_{n}$, the $\mathrm{Cu}^{\mathrm{II}}$ ion (site symmetry 2) has an elongated octahedral coordination. Four N atoms of two thiocyanate anions and two 4,4'bipyridine ($4,4^{\prime}$-bipy) ligands are sited at the equatorial positions, while two S atoms of two coordinating thiocyanate anions occupy the axial positions. The complete $4,4^{\prime}$-bipy molecule is generated by the twofold axis and one of its pyridine rings is disordered over two sets of positions. The copper ions are bridged by the $4,4^{\prime}$-bipy ligands, giving rise to a one-dimensional chain. The chains are further linked by the NCS^{-}anions, through the long axial $\mathrm{Cu}-\mathrm{S}$ contacts, yielding a two-dimensional network.

Comment

Within the context of crystal engineering (Batten \& Robson, 1998), $4,4^{\prime}$-bipyridine ($4,4^{\prime}$-bipy) is an excellent bridging ligand, which can link two metal atoms via the N atoms of its two pyridine rings, and a variety of networks have been reported (Blake et al., 1998; Carlucci et al., 1999; Dong et al., 2005; Maji et al., 2004; Xu et al., 2006). The thiocyanate anion $\left(\mathrm{NCS}^{-}\right)$can serve as a terminal ligand or a bridging ligand since both the N atom and the S atom can coordinate with metal centers (Bose et al., 2006; Jiang et al., 2004; Zhang et al., 2005). As part of our ongoing investigations of networks containing the NCS^{-}anion, we report here the crystal structure of the title compound, (I) (Fig. 1).

The coordination geometry of the copper(II) ion (site symmetry 2) is distorted octahedral. Two N-bonded NCS ${ }^{-}$ anions and two $4,4^{\prime}$-bipy ligands establish the equatorial plane with normal $\mathrm{Cu}-\mathrm{N}$ distances (Table 1). The elongated octahedral geometry is completed by two S atoms in the axial positions with a $\mathrm{Cu}-\mathrm{S}$ bond distance of 3.047 (3) \AA. One pyridine ring of the $4,4^{\prime}$-bipyridine unit is disordered over two sets of positions. The $4,4^{\prime}$-bipy ligands bridge $\mathrm{Cu}^{\text {II }}$ ions,

Received 2 September 2006
Accepted 6 September 2006

Figure 1
A segment of the polymeric structure of (I), showing 50% probability displacement ellipsoids and arbitrary spheres for the H atoms. Only one orientation of the disordered C1-pyridine ring is shown. [Symmetry codes: (i) $\frac{1}{2}-x, 1-y, z$ (also for unlabelled atoms), (ii) $x, 1-y, \frac{1}{2}+z$; (iii) $x, 1+y, z$; (iv) $\frac{1}{2}-x,-y, z$.]

Figure 2
The two-dimensional network of (I) formed by the $\mathrm{Cu} \cdots \mathrm{S}$ contacts. Only one disorder component of each $4,4^{\prime}$-bipy ligand is shown. H atoms have been omitted.
forming polymeric chains along the c axis. Adjacent chains are connected by the axial $\mathrm{Cu}-\mathrm{S}$ contacts, forming a twodimensional network extending parallel to (100) (Fig. 2).

Experimental

$\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{mmol})$ and $4,4^{\prime}$-bipyridine (0.1 mmol) were dissolved in 15 ml of water and ethanol (2:1 v / v), resulting in a blue solution which was transfered to the left-hand side of an H-tube. An aqueous solution (15 ml) of $\operatorname{KSCN}(0.2 \mathrm{mmol})$ was placed in the right-hand side of the H-tube and ethanol served as the diffusion solvent. The reaction container was kept at room temperature and
three months later green needles of (I) suitable for X-ray diffraction analysis were obtained (yield 50%, based on Cu).

Crystal data

$\left[\mathrm{Cu}(\mathrm{NCS})_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]$
$Z=4$
$M_{r}=335.88$
Orthorhombic, Pcca
$D_{x}=1.609 \mathrm{Mg} \mathrm{m}^{-3}$
$a=10.879$ (2) \AA 。
$b=5.7070(11) \AA$
$c=22.336(5) \AA$
Mo K α radiation
$\mu=1.87 \mathrm{~mm}^{-1}$
$T=292$ (3) K
Needle, green
$0.2 \times 0.05 \times 0.05 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD
diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2000)
$T_{\text {min }}=0.898, T_{\text {max }}=0.917$
7574 measured reflections
1323 independent reflections
1036 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.046$
$\theta_{\text {max }}=26.0^{\circ}$

Refinement

Refinement on F^{2}

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.052 P)^{2}\right. \\
\quad+1.1086 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.53 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.32 \mathrm{e}^{-3}
\end{gathered}
$$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{Cu} 1-\mathrm{N} 3$	$1.937(3)$	$\mathrm{Cu} 1-\mathrm{N} 1$	$2.071(5)$
$\mathrm{Cu} 1-\mathrm{N} 2^{\mathrm{i}}$	$2.040(4)$	$\mathrm{Cu} 1-\mathrm{S} 1^{\text {ii }}$	$3.0471(12)$
$\mathrm{C} 7-\mathrm{N} 3-\mathrm{Cu} 1$	172.4 (3)	$\mathrm{N} 3-\mathrm{C} 7-\mathrm{S} 1$	$179.2(3)$
$\mathrm{C} 7-\mathrm{S} 1-\mathrm{Cu} 1^{\text {iii }}$	$94.8(2)$		

Symmetry codes: (i) $x,-y+1, z+\frac{1}{2}$; (ii) $x, y+1, z$; (iii) $x, y-1, z$.
Atoms C 1 and C 2 and their attached H atoms are disordered over two positions with equal site occupancies. The H atoms were placed in calculated positions and treated using a riding-model approximation $\left[\mathrm{C}-\mathrm{H}=0.93 \AA\right.$ and $\left.U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL (Sheldrick, 1998); software used to prepare material for publication: SHELXTL.

This work was supported by the Ministry of Science Technology of China through the 973 Project (No. 2002CB613301), and the Natural Science Foundation of China (No. 20201008).

References

Batten, S. R. \& Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.
Blake, A. J., Hill, S. J., Hubberstey, P. \& Li, W.-S. (1998). J. Chem. Soc. Dalton Trans. pp. 909-916.
Bose, D., Mostafa, G., Walsh, R. D. B., Zaworotko, M. J. \& Ghosh, B. K. (2006). Polyhedron, 25, 1477-1482.
Bruker (2000). SMART, SAINT, SHELXTL and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Carlucci, L., Ciani, G. \& Proserpio, D. M. (1999). J. Chem. Soc. Dalton Trans. pp. 1799-1804.

metal-organic papers

Dong, H.-L., Xu, L., Liu, Q.-Y. \& Sang, R.-L. (2005). Acta Cryst. E61, m2340m2342.
Jiang, Y.-B., Kou, H.-Z., Gao, F. \& Wang, R.-J. (2004). Acta Cryst. C60, m261m262.
Maji, T. K., Uemura, K., Chang, H.-C., Matsuda, R. \& Kitagawa, S. (2004). Angew. Chem. Int. Ed. 43, 3269-3272.

Sheldrick, G. M. (1997). SHELXL97 and SHEXS97. University of Göttingen, Germany
Sheldrick, G. M. (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin. USA.
Xu, H., Sun, R., Li, Y.-Z. \& Bai, J.-F. (2006). Acta Cryst. E62, m1156-m1158. Zhang, X. M., Hao, Z. M. \& Wu, H. S. (2005). Inorg. Chem. 44, 7301-7303.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

